Drying in porous media with gravity-stabilized fronts: experimental results.

نویسندگان

  • A G Yiotis
  • D Salin
  • E S Tajer
  • Y C Yortsos
چکیده

In a recent paper [Yiotis et al., Phys. Rev. E 85, 046308 (2012)] we developed a model for the drying of porous media in the presence of gravity. It incorporated effects of corner film flow, internal and external mass transfer, and the effect of gravity. Analytical results were derived when gravity opposes drying and hence leads to a stable percolation drying front. In this paper, we test the theory using laboratory experiments. A series of isothermal drying experiments in glass bead packings saturated with volatile hydrocarbons is conducted. The transparent glass cells containing the packing allow for the visual monitoring of the phase distribution patterns below the surface, including the formation of liquid films, as the gaseous phase invades the pore space, and for the control of the thickness of the diffusive mass boundary layer over the packing. The experimental results agree very well with theory, provided that the latter is generalized to account for the effects of corner roundness in the film region (which was neglected in the theoretical part). We demonstrate the existence of an early constant rate period (CRP), which lasts as long as the films saturate the surface of the packing, and of a subsequent falling rate period (FRP), which begins practically after the detachment of the film tips from the external surface. During the CRP, the process is controlled by diffusion within the stagnant gaseous phase in the upper part of the cells, yielding a Stefan tube problem solution. During the FRP, the process is controlled by diffusion within the packing, with a drying rate inversely proportional to the observed position of the film tips in the cell. Theoretical and experimental results compare favorably for a specific value of the roundness of the films, which is found to be constant and equal to 0.2 for various conditions, and verify the theoretical dependence on the capillary Ca(f), Bond Bo, and Sherwood Sh numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical solutions of drying in porous media for gravity-stabilized fronts.

We develop a mathematical model for the drying of porous media in the presence of gravity. The model incorporates effects of corner flow through macroscopic liquid films that form in the cavities of pore walls, mass transfer by diffusion in the dry regions of the medium, external mass transfer over the surface, and the effect of gravity. We consider two different cases: when gravity opposes liq...

متن کامل

Experimental Survey on Microwave Drying of Porous Media

The cost of drying carpet which is done toward the end of the manufacturing process, is quite high. The carpet industry has been using convection drying for many years. Little attention has been given to quantifying the effect of microwave power during the drying of carpet. An experimental system was developed whereby air was introduced into the cavity of a domestic microwave oven. The resu...

متن کامل

A Non-isothermal Pore Network drying Model: Influence of Gravity

The concept of immiscible displacement as an invasion percolation (IP) process driven by heat and mass transfer is used in a pore network model for convective drying of capillary porous media. The coupling between heat and mass transfer occurs at the liquid-gas interface through temperature dependent equilibrium vapour pressure, surface tension and phase change enthalpy (in evaporation and cond...

متن کامل

The Effect of Wetting-Drying Cycles and Plasticity Index on California Bearing Ratio of Lime Stabilized Clays

This paper aims to present an experimental and numerical study on the effect of wetting-drying cycles and plasticity index on the California Bearing Ratio (CBR) of lime stabilized clayey soils. The numerical analysis was carried out based on finite element method for comparison between results of experimental and numerical studies. Three clays with different plasticity indices were mixed with v...

متن کامل

Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium

10 Infiltration of water in dry porous media is subject to a powerful gravity-driven instability. Although the phenomenon of unstable infiltration is well known, its description using continuum mathematical models has posed a significant challenge for several decades. The classical model of water flow in the unsaturated flow, the Richards equation, is unable to reproduce the instability. Here, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 86 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2012